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a b s t r a c t

Successful software evolves from a single system by adding and changing functionality to keep up with users’

demands and to cater to their similar and different requirements. Nowadays it is a common practice to offer

a system in many variants such as community, professional, or academic editions. Each variant provides

different functionality described in terms of features. Software Product Line Engineering (SPLE) is an effective

software development paradigm for this scenario. At the core of SPLE is variability modelling whose goal

is to represent the combinations of features that distinguish the system variants using feature models, the

de facto standard for such task. As SPLE practices are becoming more pervasive, reverse engineering feature

models from the feature descriptions of each individual variant has become an active research subject. In this

paper we evaluated, for this reverse engineering task, three standard search based techniques (evolutionary

algorithms, hill climbing, and random search) with two objective functions on 74 SPLs. We compared their

performance using precision and recall, and found a clear trade-off between these two metrics which we

further reified into a third objective function based on Fβ , an information retrieval measure, that showed a

clear performance improvement. We believe that this work sheds light on the great potential of search-based

techniques for SPLE tasks.

© 2014 Elsevier Inc. All rights reserved.
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. Introduction

Successful software evolves not only to adapt to emerging devel-

pment technologies but also to meet the clients’ and users’ func-

ionality demands. For instance, it is not uncommon to find academic,

rofessional, or community variants (a.k.a editions) of commercial

nd open source applications where each variant provides different

eatures increments in programme functionality (Zave).

The most common scenario in practice starts with a first sys-

em variant from which a new independent development branch

s forked when a new variant with different feature combinations

s required. This process is repeated as many times as new vari-

nts, also with different feature combinations, are requested. Un-

ortunately, this approach does not scale well as the number of fea-
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ures and their combinations increases even slightly (Krueger, 2001).

oftware Product Line Engineering (SPLE) is a software development

aradigm devised to cope with the problems entailed by this sce-

ario. SPLE advocates a disciplined yet flexible approach to maximize

euse and customization in all the software artefacts used through-

ut the entire development cycle (Krueger, 2001; Czarnecki and

isenecker, 2000; Pohl et al., 2005; van d. Linden et al., 2007). The

riving goal of SPLE is to create software product lines (SPLs) that real-

ze the different software system variants in an effective and efficient

anner.

However, developing SPLs from existing and individually de-

eloped system variants is not an easy endeavour. A crucial re-

uirement is capturing all the feature combinations present in SPLs

nd represent them with feature models (FMs) (Czarnecki and Eise-

ecker, 2000; Kang et al., 1990), a de facto standard for mod-

lling variability – the capacity of software artefacts to change

Svahnberg et al., 2005). Previous research has addressed this re-

erse engineering challenge from different perspectives with dif-

erent approaches such as configuration scripts (She et al., 2011),

ropositional logic expressions (Czarnecki and Wasowski, 2007),
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natural language (Weston et al., 2009), and ad hoc algorithms

(Haslinger et al., 2011, 2013; Acher et al., 2012).

Our previous exploratory study analysed evolutionary algorithms

for this reverse engineering task (Lopez-Herrejon et al., 2012). In this

paper, we extend that work by:

• Including 15 new case studies of different domains.
• Employing two more search techniques, steepest ascent hill climb-

ing and random search (Luke, 2009).
• Considering two new objective functions.
• Defining objective functions in terms of standard feature model

operations.
• Extending the state representation with additional feature order-

ing information.
• Adding new mutation and crossover operators.
• Comparing and contrasting the objective functions using standard

information retrieval metrics, recall and precision (Manning et al.,

2008).
• Performing a detailed statistical analysis along the lines suggested

by Arcuri and Briand (2014).

Our evaluation revealed a clear trade-off between recall and preci-

sion in our two objective functions. We further analysed this trade-off

and reified it into an objective function that showed a clear improve-

ment. We believe that this work is a stepping stone towards leverag-

ing the wealth of Search-Based Software Engineering techniques for

this and other SPLE challenges.

The structure of the paper is as follows. Section 2 provides the

basic background on feature models and presents our running ex-

ample. Section 3 describes the representation used to encode feature

models. Section 4 presents the three search-based techniques under

assessment and how they were adapted to our problem. Section 5

describes the objective functions analysed in our study and the defi-

nitions of recall and precision metrics for our reverse engineering task.

Section 6 presents a short overview of our implementation. Section 7

describes how the evaluation was carried out to compare and contrast

the three algorithms with our two objective functions, analyses the

results obtained highlighting the trade-off we found between preci-

sion and recall, and defines and evaluates the third objective function

that reifies this trade-off. Section 8 describes the threats to valid-

ity identified in our work and how they were addressed. Section 9

summarizes the related work closest to ours. Section 10 highlights

some open issues for future work, and Section 11 summarizes our

conclusions.

2. Running example and feature models

As a running example let us consider a hypothetical set of variants

of a software system for controlling Video On Demand (VOD) services

for home and personal entertainment. In this example, there are 18

different variants depicted in Table 1. For each variant the set of fea-

tures that are selected are depicted with tick marks �. For sake of

brevity, we employ abbreviations in the feature header labels. All the

systems have a common functionality (e.g. turning on/off) and can

play shows. These two features are respectively denoted as VOD and

Play in the table. Do notice that both are selected in all the system

variants. Similarly all systems have displaying capability, denoted by

feature Display, and have an operating system (feature OS) with its

kernel (feature Ker). Some systems have: recording capability (fea-

ture Rec), can be used either in a TV set (feature TV) or in a mobile

device (feature Mob) which can be standard phone sets (feature Std) or

smart phone sets (feature Sm), advanced operating systems capability

(feature Adv), areal antenna (feature Aer), cable TV capability (feature

Cab), and pay-per-view (feature PPV).
Our reverse engineering process starts from the set of variants

nd their provided features, as captured in a table like Table 1, and

as as goal obtaining a feature model that represents such feature

ombinations. Recall that feature models are the de facto standard

o model relations among the features and thus the common and

ariable features of an SPL (Kang et al., 1990). In feature models,

eatures are depicted as labelled boxes and are connected with lines

o other features with which they relate, collectively forming a tree-

ike structure. A feature can be classified as:

• Mandatory feature. A mandatory feature is selected in a system

whenever its parent feature is also selected. It is depicted with a

filled circle at the child end of the feature relation. For example,

Fig. 1a illustrates mandatory feature B.
• Optional feature. An optional feature may or may not be part of a

programme whenever its parent feature is part. It is depicted with

an empty circle at the child end of the feature relation. Fig. 1b is

an example of an optional feature B.

Features can also be grouped into:

• Alternative groups. If the parent feature of the group is selected,

exactly one feature from the group must be selected. Alternative

groups are depicted with lines connecting the parent feature with

the group features and an empty arc crossing the lines. For exam-

ple, Fig. 1c illustrates that if feature P is selected, then one of the

group features C1, C2 or C3 must be selected.
• Or groups. If the parent feature of the group is selected, then

one or more features from the group can be selected. Or groups

are depicted with lines connecting the parent feature and the

group features plus a filled arc crossing the lines. Fig. 1d shows

that if feature P is selected, one of more of features C1, C2 or C3
must be selected. For instance, the combination of C1 with C2,

or the combination that has all three group features C1, C2 and

C3.

Besides the parent–child relations, features can also relate across

ifferent branches of the feature model with cross-tree constraints

CTCs) (Benavides et al., 2010). The typical examples of this kind of

elations are: (i) requires relation whereby if a feature A is selected

feature B must also be selected, and (ii) excludes relation whereby

f a feature A is selected then feature B must not be selected and vice

ersa. In a feature model, these latter relations are depicted with doted

ingle-arrow lines and dotted double-arrow lines respectively. Fig. 1e

llustrates these kinds of CTCs. Additionally, more general cross-tree

onstraints can be expressed using propositional logic (Benavides

t al., 2010).

The reverse engineering process of our work is summarized in

ig. 2, which shows as input the system variants with their se-

ected features. By using search-based techniques, our goal is to ob-

ain a feature model that captures the feature combinations of the

ystem variants. It should be pointed out that feature models are

on-canonical representations, meaning that in general a set of fea-

ure combinations could be represented by more than one differ-

nt feature model. Thus trade-offs between different solutions can

e found. In addition, the commonly large number of features and

umber of variants makes it a problem suitable for search-based

echniques.

We should remark that reverse engineering a SPL from a set of

ystem variants is indeed an iterative process whereby all the in-

olved stakeholders go through multiple iterations where the feature

odels, SPL architecture and supporting platform are successively re-

ned. The goal of our work is to provide a first working feature model

hich can subsequently be refined through this iterative process

entioned.

As an example target of our reverse engineering process let us

onsider a feature model for our running example shown in Fig. 3.
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Table 1

System variants of VOD software product line.

Variant VOD Play Rec Disp OS TV Mob Sm Std Ker Adv Aer Cab PPV

V1 � � � � � � � � �

V2 � � � � � � � �

V3 � � � � � � � �

V4 � � � � � � �

V5 � � � � � � � � �

V6 � � � � � � � �

V7 � � � � � � �

V8 � � � � � � � �

V9 � � � � � � � � � �

V10 � � � � � � � � �

V11 � � � � � � � � �

V12 � � � � � � � �

V13 � � � � � � � � � �

V14 � � � � � � � � �

V15 � � � � � � � � �

V16 � � � � � � � �

V17 � � � � � � � � � �

V18 � � � � � � � � �

Feature abbreviations: video on demand (VOD), play (Play), record (Rec), display (Disp), operating system (OS), television (TV), mobile (Mob), smart phone (Sm), standard phone (Std),

kernel (Ker), advance OS (Adv), aereal TV (Aer), cable TV (Cab), pay-per-view (PPV).

Fig. 1. Feature models graphical notation.
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e can pick as the root feature VOD because it is always present in

ll systems. Features Play, Display and OS are mandatory, whereas

ecord and PPV are optional. In addition, feature OS has mandatory

eature Kernel and optional feature Advanced. This feature model

ontains three alternative groups: (i) for the kinds of displays, fea-

ures Display with TV and Mobile, (ii) for types of TV input, fea-
Fig. 2. Reverse engineering fe
ure TV with Aerial or Cable, and (iii) for types of mobiles, fea-

ures Mobile with Standard and Smart. Focus now on the CTCs. No-

ice the requires relations between features Smart and Advanced,

eaning that if a product contains feature Smart it must also con-

ain feature Advanced. The same is the case between Smart and

PV, and between Cable and PPV. Finally, features Aerial and PPV
ature models overview.



356 R.E. Lopez-Herrejon et al. / The Journal of Systems and Software 103 (2015) 353–369

Fig. 3. Video on demand SPL feature model.

Fig. 4. ETHOM-based search state representation of feature models.
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are in an excludes relation meaning that both cannot be present in

the same product.

Next we provide a more formal definition of feature sets and their

relation with system variants.1

Definition 1. A feature set is a 2-tuple [sel,sel] where sel and sel are

respectively the set of selected and not-selected features of a system

variant. Let FL be the list of features of a feature model, such that sel,

sel ⊆ FL, sel ∩ sel = ∅, and sel ∪ sel = FL.

Definition 2. A feature set is valid if the selected and not-selected

features adhere to all the constraints imposed by the feature model.

For example, the feature set fs=[{VOD, Play, Display,
TV, Aerial, OS, Kernel}, {Record, Cable, Mobile, Std, Smart,
Advanced, PPV}] is valid. In fact, it corresponds to variant V4 in

Table 1. As another example, a feature set with features TV and Mobile
is not valid because it violates the constraint of the or relation which

establishes that these two features cannot appear selected together

in the same feature set.

3. Search space representation

The states of our search space are the different feature models

that can be formed with all the features in the system variants from

which a feature model is going to be reverse engineered. We base

our state representation on ETHOM, which stands forEvolutionary al-

goriTHm for Optimized feature Models (Segura et al., 2014). In this

work a feature model is represented as two arrays, one for the tree

structure of the feature model and one for the CTCs. A limitation of

this representation is that the order of features is fixed. Every in-

dex in the tree structure array is assigned a fixed feature at the very
1 Adapted from Benavides et al. (2010) where feature sets are referred to as config-

urations.

c

D

O

eginning. To remove this limitation we extend the representation

y an additional array that represents the depth-first traversal order

f the features. Let us now describe the three arrays of the extended

THOM representation.

The array that represents the structure of a feature model tree

onsists of tuples of the form 〈PR, CN〉 where:

• PR denotes the type of relationship a feature has with its parent.

It can be M for mandatory, Op for optional, Alt for alternative, and

Or for or relation.
• CN denotes the number of children of the feature.

The order of these tuples in this array is determined by a depth-

rst traversal (DFT) of the feature model starting from the root. Fig. 4

hows the DFT traversal of the feature model of our running example

hown in Fig. 3. Notice that the root is not encoded. As a first example

onsider the tuple at entry with DFT value 6. It encodes feature Mobile
hich is an alternative (PR value is Alt) feature of its parent (feature

isplay), and has two children (CN value is 2), namely Std and Smart.

s another example, consider the tuple at entry with DFT value 11.

his tuple encodes feature Advanced, with an optional relation with

ts parent feature OS (PR value is Op), and with no children (CN value is

). The complete array for the structure of the feature model is shown

n Fig. 4a.

The second array determines which feature is assigned to which

FT index and also which feature is the root. In Fig. 4a the array for

he DFT order of the features is shown beneath the array for the tree

tructure. The feature order array contains one additional element be-

ause it also encodes the root feature. Feature VOD is the root feature.

FT index 0 is assigned feature Play and so on.

The array of the cross-tree constraints are tuples of the form 〈TC,

, D〉 where:
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• TC encodes the type of cross-tree constraint. An R value denotes a

requires constraint whereas an E value denotes an excludes con-

straint.
• O encodes the origin feature of the cross-tree constraint repre-

sented with the corresponding DFT value.
• D encodes the destination feature of the cross-tree constraint rep-

resented with the corresponding DFT value.

For example, the tuple 〈E, 4, 12〉 encodes the excludes cross-

ree constraint between features Aerial (DFT value 4) and PPV (DFT

alue 12). As another example, the tuple 〈R, 8, 11〉 encode a re-

uires cross-tree constraint between features Smart (DFT value 8)

nd Advanced (DFT value 11). The complete array for the CTCs of the

eature model is shown in Fig. 4a.

. Search based techniques

In this section we sketch the search techniques we use in our

tudy, their operators and their parameters setting. In Section 6 we

escribe how they were actually realized.

.1. Evolutionary algorithm (EA)

Our previous work explored a evolutionary algorithm for re-

erse engineering feature models which we summarize in this

ection (Lopez-Herrejon et al., 2012). It follows the standard
Fig. 5. Example of one-point crossover in ETHOM
volutionary algorithm flow that starts with a randomly generated

nitial population of individuals, in our case feature models, which

re then evaluated. The next population is subsequently computed

y selecting individuals from the current population and randomly

erforming crossover and mutation operations on them. This process

s repeated until an ideal individual is found or until the maximum

umber of generations is reached. Next we explain how the initial

opulation was created, and how crossover and mutation work in

ur context.

.1.1. Initial population and selection

There are different alternatives in the literature to randomly gen-

rate feature models (Thüm et al., 2009; Segura et al., 2012). We relied

n BeTTy, a framework that implements ETHOM and can generate

andom feature models with the following configuration parameters:

i) population size, (ii) number of features, (iii) percentage of cross-

ree constraints (relative to the number of features), (iv) maximum

ranching factor (defined as the maximum number of subfeatures of

feature, considering all the types of relationships), (v) percentage of

andatory relations, (vi) percentage of optional relations, (vii) per-

entage of Alternative relations, (viii) percentage of Or relations. We

hose standard values to set the parameters for the generation of the

nitial population of feature models, see Table 2. Similarly, we used

tandard values for the parameters of the evolutionary algorithm as

hown in Table 3.
-based representation (Segura et al., 2014).
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Table 2

Configuration parameters for initial population generation.

Parameter Value selected

Population size 100

Number of features Same as input products

Percentage of CTCs 0

Maximum branching factor 10

Percentage of mandatory relations Randoma

Percentage of optional relations Randoma

Percentage of Alt relations Randoma

Percentage of Or relations Randoma

a Random such that they sum up to 1.

Table 3

Summary of evolutionary algorithm configuration parameters.

Parameter Value selected

Selection strategy Roulette-wheel

Crossover strategy One-point

Crossover probability 0.7

Per gene mutation probability 0.01

Per chromosome mutation probability 0.1

Population size 100

Infeasible individuals Repair

Maximum generations 25

c

b

c

T

c

p

C

i

(

S

t

b

a

There are multiple alternatives to implement selection in the evo-

lutionary algorithms literature (Eiben and Smith, 2003). We chose

roulette wheel as our selection strategy, again, a standard setting in

evolutionary algorithm research.

4.1.2. Operators

The two characteristic operators of the ETHOM-based representa-

tion are crossover and mutation. We describe and illustrate how they

work next.

4.1.2.1. Crossover. There are multiple alternatives to implement

crossover (Eiben and Smith, 2003). For the crossover of the tree

structure array and the CTC array we adapted the one-point
Fig. 6. Feature ord
rossover whose application is illustrated in Fig. 5. The process starts

y selecting two parent individuals, in our case feature models en-

oded as described in Section 3, like those shown in Fig. 5a and b.

he crossover point is depicted with a bar symbol (|). Like standard

rossover, the two new offsprings are generated by swapping the tu-

les starting from the crossover point on both the structural and the

TCs arrays. For example, the first offspring shown in Fig. 5c, has in

ts structural array the tuples DFT-indexed 0–4 from the first parent

Fig. 5a) and those DFT-indexed 5–7 from the second parent (Fig. 5b).

imilarly, the CTCs array of this new offspring has its first tuple from

he first parent and the second tuple from its second parent.

The crossover of the feature order array is not as simple,

ecause additional constraints apply here. Every feature must

ppear exactly once in every feature model individual. However, a
er crossover.
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(

imple one-point crossover will violate this constraint in that fea-

ures will appear twice or not at all. Therefore we devised another

rossover operator specifically designed for this purpose. It first gen-

rates a sequence of random numbers r that sum up to the number of

eatures in the feature model. Then it takes the first r0 features from

he first parent and puts them into the offspring, then r1 from the sec-

nd parent, r2 from the first parent again and so on. Features that are

lready contained in the offspring are skipped and not counted. For

he second offspring the same thing is done using the same random

umbers sequence r but starting with the second parent. An example

s shown in Fig. 6 for the random number sequence r = (2, 2, 3, 2). The

rst r0 = 2 features F0 and F3 are taken from the first parent and put

nto the offspring. Then r1 = 2 features, F5 and F2, are taken from the

econd parent. For the next r2 = 3 features from the first parent the

eature F2 is skipped because it is already contained in the offspring

nd features F1, F6 and F8 are put into the offspring. Lastly the re-

aining r3 = 2 features, F4 and F7, from the second parent are copied

ver and the crossover for the first offspring is done. The same thing

s repeated for the second offspring only this time starting with the

econd parent.

Performing the crossover operation can yield infeasible individ-

als, i.e. not well-formed feature models. Consider for instance the

econd offspring produced shown in Fig. 5d. Notice that the tuple

ith DFT-index 4 indicates that this feature must have three children

eatures. However, the next tuple (DFT-index 5) indicates that the

orresponding feature must also have a child feature. But this is not

ossible because there are not enough features in the part crossed

ver to satisfy both of these requirements. We employ ETHOM mech-

nisms for the identification and repair of feature model errors. A

hort overview is presented in Appendix A, for further details please

efer to Segura et al. (2014).

.1.2.2. Mutation. We apply mutations either on a per gene (i.e. array

ntry) basis where every gene in a chromosome has a chance of being

utated or on a per chromosome basis where a chromosome has a

hance of being mutated. Next we describe the mutation operators

hat we employed.

For the tree-structure array:

• Operator 1. Changes randomly a relation between two features

from one kind to any other kind. For example, from mandatory (M)

to optional (Op) or from Op to Alternative (Alt). This mutation is

applied per gene.
• Operator 2. Changes the number of children CN, to a number se-

lected from 0 to a maximum branching factor parameter. This

mutation is applied per gene.

For the features DFT order array:

• Operator 3. Two random features of a chromosome are swapped

in the features DFT order array.

For the CTC array:

• Operator 4. Changes the type of cross-tree constraint, from ex-

cludes to requires and vice versa. This mutation is applied per

gene.
• Operator 5. Changes either the origin or destination feature (with

equal probability) of a cross-tree constraint. It is checked that

the resulting CTC does not have the same origin and destination

values. This mutation is applied per gene.
• Operator 6. Removes a cross-tree constraint. This mutation is ap-

plied per gene.
• Operator 7. Adds a random cross-tree constraint to a chromosome.
 t
Like crossover, the mutation operators can produce feature models

hat are not semantically correct. As before, we relied on ETHOM

echanisms to identify and repair feature models with errors (Segura

t al., 2014). Table 3 summarizes the configuration parameters for the

enetic algorithm and the values that were used.

.2. Steepest ascent hill climbing (HC)

We employed a standard steepest ascent hill climbing search

s sketched in Algorithm 1 (Luke, 2009). It starts with a randomly

enerated initial state (Line 1). From this state, a neighbourhood of

ampleSize states is created and searched (Lines 6–12). If a neighbour

tate has a better fitness value than the current state, the search moves

o that state (Lines 13–14). This process is repeated until the number

f iterations (MaxIter) is exceeded or an ideal solution (BestFitness)

s reached (Line 4).

Note here the auxiliary function move in Line 7. This function re-

eives as input a state (i.e. an encoded feature model) and applies the

utation operators, described in Section 4.1.2, in combination with

new operator shuffle to generate a valid new state. This new op-

rator was added to provide more diversity in the generated neigh-

our states. It works by randomly generating: (i) number of tuples

o shuffle, (ii) an index number in the array where the tuples are

elected from, and (iii) an index number in the array where the tu-

les are moved to. Fig. 7 illustrates this operator. First it indicates in

ig. 7a the three required random numbers. In this example, it shuf-

es three tuples, from array index 2 to array index 7 in the tree

tructure array along with the corresponding features in the feature

rder array. The resulting feature model and its encoding are shown in

ig. 7b.

Notice that the shuffle operator is not applicable to the CTC array

f the feature model encoding because there the tuple order does

ot matter. The parameters of this search technique and their corre-

ponding values used are summarized in Table 4.

.3. Random search (RS)

We follow a standard random search as sketched in Algorithm

. It starts with a random initial state (Line 1). A new random state

s generated, using the move auxiliary function as explained before

Line 4). The search moves to a new state if it has a fitness value bet-

er than the current Best state (Lines 5–6). This process is repeated
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Fig. 7. Shuffle operator example.

Table 4

Steepest ascent hill climbing configuration parameters.

Parameter Value selected

Shuffle probability 0.3

Per tuple mutation probability 0.1

Samples size 100

Infeasible individuals Repair

Maximum iterations 25
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until the number of iterations (MaxIter) is exceeded or an ideal so-

lution (BestFitness) is reached (Line 3). For a fair comparison, the

number of iterations is set to generate the same number of states

(calls to function move) like the other two search techniques of our

study. Thus this value was set to 100 × 25 = 2500 iterations.

5. Objective functions

In this section we define the two objective functions used in our

study. These functions were defined in terms of feature model anal-

ysis operations as shown next. Subsequently, we describe the two

standard information retrieval metrics used to compare and contrast

the results obtained.

5.1. Auxiliary functions

The coming auxiliary functions were implemented based on the

feature model analysis operations supported by FaMa (Benavides

et al., 2007), whose definitions are described by Benavides et al.

(2010).

Let FM denote the universe of feature models, and SFS the uni-

verse of sets of feature sets.

• #features : FM → N, returns the number of features contained
in a feature model. m
• #featureSets : FM → N, returns the number of feature sets (a.k.a

products) denoted by a feature model.
• #containedFeatureSets : SFS × FM → N, returns the number of

feature sets received as first argument sfs that are valid according

to a feature model fm.
• surplus : SFS × FM → N, returns the number of feature sets de-

noted by feature model fm that are not contained in the required

feature sets sfs:

surplus(sfs, fm) = #featureSets(fm)

−#containedFeatureSets(sfs, fm) (1)

It holds that surplus(sfs, fm) 0.
• deficit : SFS × FM → N, returns the number of feature sets in

sfs that are not contained in the feature sets denoted by feature

model fm:

deficit(sfs, fm) = |sfs| − #containedFeatureSets(sfs, fm) (2)

It holds that 0 � deficit(sfs, fm) � |sfs|.

.2. Objective functions definitions

We devised two objective functions to capture the different re-

erse engineering concerns for feature models. Next we define each

f these functions and explain their underlying motivation.

Relaxed objective function (Relaxed). This function expresses the

oncern of capturing primarily the feature sets of the system variants

function # containedFeatureSets), any other feature sets that could

e denoted by the reverse-engineered feature model are thus irrel-

vant. Hence, this objective function should be maximized, with the

aximum value being the number of feature sets to reverse engineer.

quation 3 shows the definition of this function.

elaxedFF(sfs, fm) = #containedFeatureSets(sfs, fm) (3)

Minimal difference objective function (MinDiff). Based on our

revious experience with RelaxedFF, we observed that this function

ndeed retrieved the desired feature sets in the majority of cases

Lopez-Herrejon et al., 2012). However, it also retrieved many more

eature sets that were not relevant. The goal of MinDiff is precisely

o express the concern of obtaining a closer-fit feature model from

he feature sets of the system variants. MinDiff accounts for the num-

er of feature sets missing (function deficit) and the number of

dditional feature sets (function surplus) in the reverse-engineered

eature model. This objective function should be minimized, with the

inimum value being zero which represents the perfect fit. Eq. 4

hows the definition of this function.

inDiffFF(sfs, fm) = deficit(sfs, fm)+ surplus(sfs, fm) (4)
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Table 5

Feature models summary.

Feature model name NF NFS Domain Feature model name NF NFS Domain

model_20110519_1142211980 10 1 Container ZipMe 8 64 Data compression

model_20110301_216655728 10 2 Automotive model_20110130_639381749 12 64 Insurance

model_20120328_523540818 10 8 Phone model_20110203_1382675896 14 64 OCL tool

model_20120113_1950870026 10 9 e-Shop PKJab 12 72 Messenger

model_20110601_1103941862 12 11 Text editor model_20110401_868452735 14 72 Academic

model_20091015_449909368 10 12 Language gpl 18 73 Graph algorithms

car_fm 9 1 3 Academic REAL-FM-7 14 80 IDE tool

model_20120328_1373483522 13 14 Parking lot model_20091129_1734444143 12 84 Tutoring system

model_20120110_1719396361 10 16 Phone model_20111129_1932950448 13 96 NA

model_20120110_855603964 10 16 Academic model_20110406_656545830 17 96 Audio player

model_20091219_494647199 11 16 Web portal model_20110605_1465859222 17 112 Mobile media

model_20110915_1159959623 10 17 academic model_20111020_455520177 11 120 Robotics

connector_fm 20 18 Academic model_20110323_789959080 15 120 Software pattern

model_20111027_1380540076 10 20 NA model_20110823_553386338 21 128 Academic

model_20120110_1754443954 10 20 Phone model_20091206_1647557456 10 135 Game

REAL-FM-13 12 21 Telecommunications argo-uml-spl 11 192 UML tool

model_20101117_1571856147 10 24 Economy model_20110306_314567479 14 248 TV set

model_20120202_1596034358 10 28 Mobile BDBFootprint 9 256 Database

model_20110622_260389190 12 28 Automotive Apache 10 256 Web server

REAL-FM-8 17 28 Monitoring system aircraft_fm 13 315 Academic

model_20100927_1382418986 10 31 Mobile fame_dbms_fm 20 320 Database

Prevayler 6 32 Object persistence fame_dbms_fm_v2 21 320 Database

model_20101104_260803083 11 32 NA model_20110925_62365838 23 336 Academic

model_20110519_503436691 11 35 NA model_20100607_746327867 20 448 Academic

model_20100822_281357717 15 36 Web caching DesktopSearcher 22 462 File search

model_20120109_1808102333 18 36 Software process model_20120201_899753062 27 560 Academic

model_20111220_1184087779 15 40 Automotive model_20090801_1908323193 13 624 Software library

model_20101123_920943759 15 44 Sales management model_20110216_608697455 14 640 NA

model_20101111_1790887308 10 48 Phone model_20100712_329430908 20 640 Card products

model_20100325_298677687 11 48 Video app model_20110310_1849309646 23 810 Server app

model_20101111_156018899 12 48 e-Shop model_20110203_2097159983 18 896 OCL tool

REAL-FM-10 14 48 Virtual office LLVM 12 1024 Compiler library

model_20110823_1386366267 15 50 Software process Curl 14 1024 Data transfer

model_20101124_661702924 15 60 Academic LinkedList 27 1344 Data structures

model_20120328_361613983 16 60 Web game x264 17 2048 Video encoding

model_20100308_1032655961 15 61 Mobile phone BDBMemory 19 3840 Database

model_20111025_1408959776 13 63 Music player Wget 17 8192 File retrieval

NF: number of features, NFS: number of feature sets, NA: domain not available.
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Fig. 8. Architecture overview.
.3. Comparing objective functions

In order to compare the two objective functions we relied on two

asic information retrieval metrics (see Manning et al., 2008). To the

est of our knowledge, our work is the first to use these metrics in

he context of reverse engineering feature models. Next we describe

ow they were adapted to our context.

Precision. The fraction of the retrieved feature sets that are rele-

ant to the search.

recision(sfs, fm) = #containedFeatureSets(sfs, fm)

#featureSets(fm)
(5)

Recall. The fraction of the feature sets that are relevant to the

earch that are successfully retrieved.

ecall(sfs, fm) = #containedFeatureSets(sfs, fm)

|sfs| (6)

In the subsequent sections we describe how our reverse engineer-

ng framework was implemented and evaluated.

. System architecture and implementation

We based the implementation of our work on ETHOM (Segura

t al., 2014) and the implementation of our own previous work

Lopez-Herrejon et al., 2012). We also used FaMa (FeAture Model

nalyser) (Benavides et al., 2007, 2013) to implement the objec-

ive functions and other reasoning operators. FaMa is a pioneer-

ng and leading Java-based tool suite for the analysis of feature
odels. It provides a large catalogue of efficient implementations of

eature model operations which can be easily extended. Furthermore,

t supports multiple reasoning engines such as SAT or Constraint Pro-

ramming tools. Additionally we relied on BeTTy, a benchmark and

esting framework for feature model analysis (Segura et al., 2012).

eTTy provides an implementation of various tools for evolution-

ry algorithms with feature models like the conversion of a feature

odel into a chromosome or the generation of random feature mod-

ls. ETHOM, which can generate feature models, for instance, that are

ard to analyse in execution time or memory footprint (Segura et al.,

012) is based on BeTTy. An overview of the system architecture is

hown in Fig. 8.
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Table 6

Average runtime per feature model in mins:secs.

Relaxed MinDiff

EA 02:26 01:56

HC 01:19 01:21

RS 01:16 02:28

Table 7

Average recall and precision values for relaxed and MinDiff.

Recall Precision

Function EA HC RS EA HC RS

Relaxed 0.9649 0.8015 0.6975 0.1365 0.2251 0.1462

MinDiff 0.3307 0.2953 0.2189 0.6525 0.6637 0.4807
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7. Evaluation

In this section we describe how our evaluation was carried out, the

results obtained for each objective function, the statistical analysis

performed and the conclusions that can be drawn.

7.1. Experimental setup

In practice, reverse engineering of SPL occurs usually with a low

number of existing variants. For example, Hetrick et al. describe an

industrial case study that was reverse engineered from 23 products

(Hetrick et al., 2006). We selected for our work case studies with

about a thousand feature sets.2 This selection allows us on one hand

to evaluate typical sizes of reverse engineered SPLs, but also allows

us to evaluate scalability issues in larger samples.

Our previous work (see Lopez-Herrejon et al., 2012) considered 59

feature models selected from the SPLOT repository (see (Generative

Software Development, 2013)). To this set we added 15 new feature

models from actual SPLs that are publicly available.3 This extended

corpus now ranges from 6 to 27 number of features, and from 1

to 8192 number of feature sets. Table 5 presents a summary of the

feature models selected.

For each feature model, we computed the feature sets that it de-

notes and saved them in a table that was used as input to our search

based techniques, as illustrated in Fig. 2. We executed 30 independent

runs for each feature model input set for each of the three algorithms

and for each objective function. The total number of independent runs

is thus: 74 (feature models) × 3 (algorithms) × 2 (objective functions)

× 30 runs = 13,320.

We ran our experiments on an array of different machines with

4–16 cores with clock speeds between 2 and 4 GHz with 4–16 GBs

of memory. A summary of the average runtimes for a single reverse

engineering run of a single feature model is shown in Table 6.

7.2. Analysis

In this section we analyse the results obtained for each objective

function and search algorithm whose average values of recall and

precision are shown in Table 7, while the average values obtained for

each feature model are shown in Fig. 9.

7.2.1. Results of Relaxed objective function

For the Relaxed objective function all three techniques ranked

well according to the recall performance indicator with EA (0.96) in
2 Do notice that the 59 models in our conference paper (see Lopez-Herrejon et al.,

2012), were selected with up to a thousand feature sets. In this paper we include six

larger cases to evaluate scalability.
3 http://www.fosd.de/fh,http://spl2go.cs.ovgu.de/,http://fosd.de/SPLConqueror

p

he first position followed by HC (0.80) and RS (0.69) respectively.

his result means that the generated feature models included most of

he input feature sets. In fact, EA generated feature models including

he complete target set of products in 46 out of 74 problem instances,

.e. those with a recall value equal to 1. We used Pearson’s coefficient

o see if there was any correlation between the number of feature

ets and the recall values. For EA (−0.25) it indicated a weak inverse

elation (i.e. lower recall as the number of feature sets increases),

hereas for HC (−0.40) and RS (−0.46), it indicated that recall values

end to decrease as the number of feature sets increases but not with

strong correlation.

Regarding precision, HC (0.22) returned the best average value fol-

owed by RS (0.14) and EA (0.13). In contrast to the recall results, the

recision values are considerably low which means that most gener-

ted models contained a large amount of products not included in the

nput feature sets. Again we applied Pearson’s correlation coefficient

nd did not find a strong correlation (all values <0.06). These results

orroborate the fact that the Relaxed objective function favours recall

hile practically disregarding precision. This is clearly observed in

ig. 9a, c and e which show the values of recall (horizontally) and

recision (vertically) for the three optimization techniques with the

elaxed objective function. Most dots are grouped around the right

ottom corner (high recall, low precision) instead of the ideal region

owards the top right corner (high recall and precision) where only a

ew values were found.

.2.2. Results of MinDiff objective function

Fig. 9b, d and f shows that the recall performance indicator obtains

ower values for the MinDiff objective function in all three search

ased techniques. EA is the best with a value of 0.33. This means that

he generated feature models do not include most of the required in-

ut feature sets. Using Pearson’s correlation coefficient did not reveal

ny strong correlation between the number of feature sets and recall

all values <−0.18).

Regarding precision, HC (0.66) obtained the best average value

ollowed closely by EA (0.65) and thirdly by RS (0.48). In contrast to

he recall results, the precision values are better which means that

he feature sets represented by the models are, in most of the cases,

art of the input feature sets.

In contrast with the Relaxed function, these results confirm that

inDiff favours precision because it explicitly accounts for surplus

eature sets. This is clearly observed in Fig. 9b, d and f which show the

alues of recall (horizontally) and precision (vertically) for the three

ptimization techniques and the MinDiff objective function. In these

gures, most dots are grouped towards the left top corner (higher

recision than recall) instead of the right top one (high recall and

recision) where only a few values were found.

.3. Statistical analysis

The goal of our statistical analysis is twofold. First, to provide

ormal and quantitative evidences (statistical significance) that the

hree search based techniques and the objective functions have in

act an impact on the comparison metrics, i.e. that the differences in

he results were not obtained by mere chance. Second, to show that

hose differences are significant in practice (effect size). The statistical

nalysis of the data was performed using a combination of the R

tatistical package.4 and the online statistical tool STATService5

.3.1. Statistical significance

In order to determine whether algorithms have an actual im-

act on the comparing performance indicators for each objective
4 http://www.r-project.org/
5 http://moses.us.es/statservice

http://www.fosd.de/fh
http://spl2go.cs.ovgu.de/
http://fosd.de/SPLConqueror
http://www.r-project.org/
http://moses.us.es/statservice
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Fig. 9. Recall and precision graphs for relaxed and MinDiff objective functions.
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Table 8

Friedman test statistic and p-values.

Relaxed MinDiff

Recall Precision Recall Precision

p-Value �0.01 �0.01 �0.01 �0.01

Statistic 51.9242 50.37 53.3294 50.5696
unction, we used Null Hypothesis Statistical Test (NHST). In NHST,

wo contrary hypothesis are formulated. The first hypothesis is

eferred to as null hypothesis (H0) and assumes that the algorithm or

bjective function has no impact at all on the values of performance

ndicators, e.g. there is no difference between the recall provided by

he algorithms. Opposite to the null hypothesis, an alternative hypoth-

sis (H1) is formulated, stating that the algorithm has a significant

ffect in the results obtained. Statistical tests provide a probability

called p-value) ranging in [0,1]. The lower the p-value of a test, the

ore likely that the null hypothesis is false and the alternative hy-

othesis is true, e.g. there is a difference in the recall provided by

he algorithms. Researchers have established by convention that p-

alues under 0.05 or 0.01 are so-called statistically significant, leading

o assume that the alternative hypothesis is likely true.

The techniques used to perform the statistical analysis and obtain

he p-values depend on the statistical properties of the data (Derrac

t al., 2011). After some preliminary tests (Kolmogorov–Smirnov,

rank and Massey, 1951 and Shapiro–Wilk, Shapiro and Wilk, 1965
ests) we concluded that our data did not follow a normal distribu-

ion in general, thus our analysis requires the use of non–parametric

echniques. In particular, since we compare three different algorithms

Derrac et al., 2011), we applied the Friedman test (Derrac et al., 2011).

he p-values and statistics of such tests are shown in Table 8. Since

he p-values shown in this table are smaller than 0.01 in all cases,

e reject the null hypotheses, and consequently state that there ex-

st differences in the algorithms for all the objective functions and

erformance indicators (recall and precision).
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Table 9

Holm’s post hoc p-values (and significance threshold).

Relaxed MinDiff

Recall Precision Recall Precision

EA vs HC �0.01 �0.01 0.4847 0.4349

EA vs RS �0.01 0.0096 �.01 �0.01

HC vs RS 0.0399 �0.01 �0.01 �0.01

Table 10
̂A12 statistic for each pair of algorithms and combination of objective function and

performance measure.

Relaxed MinDiff

Recall Precision Recall Precision

EA vs HC 0.8950 0.5000 0.5043 0.4742

EA vs RS 0.8689 0.4998 0.5946 0.6565

HC vs RS 0.5822 0.4998 0.6009 0.6612

Table 11

Average ranking of Friedman’s test for each combination of objective function and

algorithm.

Position Recall Precision

Obj. func. Alg. Avg. rank Obj. func. Alg. Avg. rank

#1 (best) Relaxed EA 1.1486 MinDiff HC 2.4595

#2 Relaxed HC 2.7838 MinDiff EA 2.6689

#3 F1 EA 3.3919 F1 EA 2.8851

#4 Relaxed RS 3.4392 F1 HC 3.2500

#5 F1 HC 5.0338 F1 RS 5.3784

#6 F1 RS 6.1824 MinDiff RS 5.5068

#7 MinDiff EA 6.9054 Relaxed LS 6.5405

#8 MinDiff HC 7.4932 Relaxed RS 7.9459

#9 MinDiff RS 8.6216 Relaxed EA 8.3649
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In order to determine which algorithms are providing such dif-

ference, we perform additional post hoc analyses. Those analyses

perform pair-wise comparison among the results of each algorithm,

determining whether statistically significant differences exist among

the results of a specific pair of algorithms. Specifically, Table 9 shows

the p-values of Holm’s post hoc procedure for each pair of algorithm

and combination of objective function and performance indicator.

The p-values shown in this table are smaller (or equal) than its cor-

responding significance threshold except for the shaded cells. Conse-

quently, we determine that the differences of performance between

the algorithms are significant in all cases except for EA and HC for re-

call and precision using MinDiff as objective function. This similarity

can be observed in Fig. 9b and d.

7.3.2. Effect sizes

Even when differences in the performance of the algorithms are

statistically significant as in our case, it is also crucial to assess the

magnitude of such a difference, in order to ensure that such difference

has practical value.6 Following the guidelines provided in (Arcuri and

Briand, 2014), we use Vargha and Delaney’s ̂A12 statistic to evaluate

the effect size. Specifically, ̂A12 measures the probability that using

one algorithm yields higher values than the other for a comparison

metric.7 For example, ̂A12 = 0.8 entails we would obtain better re-

sults 80% of the runs with the first of the algorithms compared, and
̂A12 = 0.2 entails we would obtain better results 80% of the runs with

the other algorithm compared. Thus we have an ̂A12 value for each

combination of objective function and comparison metric for every

pair of algorithms.

Table 10 shows the values of such effect size statistic. We high-

light in grey the values with largest distance from 0.5 (value that

indicates no difference between algorithms) per column in the ta-

ble. Results show that the largest difference in recall was between

EA and HC with a value of 0.8950, but also a high value (0.8689)

was found with RS. This clearly indicates that in terms of recall for

the Relaxed function, EA outperforms the other two algorithms. For

Relaxed function and precision, the picture is significantly different

because there is either no difference between the algorithms (EA vs

HC), or the difference is rather negligible (0.4998). This is not sur-

prising as the Relaxed function is not concerned for precision. For the

MinDiff function the largest differences were obtained between HC
6 Note that with a large enough sample size we can obtain statistically significant

differences for distributions with very similar results (Arcuri and Briand, 2014).
7 We prefer ̂A12 to d = (μA − μB)/σ (which is the most known and intuitive effect

size measure) since it is a non-parametric effect size measure, and consequently it is

applicable even when the data does not follow a normal distribution.

i

o

m

o

R

r

nd RS, closely followed by the differences between EA and RS. Over-

ll these results thus confirm that the algorithms used do have an

ctual impact.

.4. Reifying trade-off between precision and recall as objective function

The trade-off identified between recall and precision with our two

tness functions (Relaxed and MinDiff) could be captured in different

orms. In this paper we express this trade-off using the Fβ measure,

here β indicates how many times the recall values weight more

n comparison with the precision values (Manning et al., 2008). Fβ

easure is thus defined as follows:

β = (1 + β2)× precision × recall

β2 × precision + recall
(7)

From our experience in reverse engineering feature models, re-

all has usually more importance because software engineers need

ndeed to make sure they model at least the system variants they cur-

ently have to construct a SPL. However, how much more important is

ecall over precision would vary on a case to case basis depending on

actors such as the problem domain or the intended use of the reverse

ngineered feature models (e.g. for combinatorial interaction testing

here low precision may hinder the test effort, Lopez-Herrejon et al.,

014a,b). By giving distinct values to the parameter β the software

ngineers can define a fitness function that effectively adapts to their

oncrete needs.

In this paper, we use β = 1 as an illustrative example where both

recision and recall have the same importance. Thus our F1 measure

s defined as

1 = 2 × precision × recall

precision + recall
(8)

.4.1. Statistical analysis of F1 objective function

Fig. 10 shows the recall and precision graphs obtained for F1. We

erformed the same statistical tests as in Section 7.3 for both precision

nd recall to determine if F1 improves the results compared with

elaxed and MinDiff.

Table 11 shows the average ranking of Friedman’s test for each

ombination of objective function and algorithm. For recall, F1 scored

.3919 when using EA which is only surpassed by the Relaxed function

ombined with EA or HC. F1 ranked similarly in precision with a value

f 2.8851, but now surpassed by MinDiff combined with HC or EA.

hese findings show a clear picture, namely, that when recall is more

mportant for the reverse engineering task the Relaxed function wins

ver F1 and MinDiff in that order. Complementary, when precision is

ore important, MinDiff wins over F1 and Relaxed in that order. In

ther words, we observe that the Relaxed function performs better for

ecall, MinDiff for precision and F1 provides a trade-off “in between”

ecall and precision.



R.E. Lopez-Herrejon et al. / The Journal of Systems and Software 103 (2015) 353–369 365

Table 12

p-Values of Holms post hoc analyses for recall.

Relaxed MinDiff F1

EA HC RS EA HC RS EA HC

Rel. HC 0.0003

RS �0.01 0.1455

MinDiff EA �0.01 �0.01 �0.01

HC �0.01 �0.01 �0.01 0.1917

RS �0.01 �0.01 �0.01 0.0001 0.0122

F1 EA �0.01 0.1768 0.9163 �0.01 �0.01 �0.01

HC �0.01 �0.01 0.0004 �0.01 �0.01 �0.01 0.0003

RS �0.01 �0.01 �0.01 0.1083 0.0036 �0.01 �0.01 0.0107

Table 13

p-Values of Holms post hoc analyses for precision.

Relaxed MinDiff F1

EA HC RS EA HC RS EA HC

Rel. HC �0.01

RS 0.3521 �0.01

MinDiff EA �0.01 �0.01 �0.01

HC 0.0001 �0.01 �0.01 0.6418

RS �0.01 0.0018 0.0217 �0.01 �0.01

F1 EA �0.01 �0.01 �0.01 0.6311 0.34444 �0.01

HC �0.01 �0.01 �0.01 0.1968 0.0791 �0.01 0.4177

RS �0.01 0.0098 �0.01 �0.01 �0.01 0.7755 �0.01 �0.01

Table 14
̂A12 measure for F1.

Relaxed MinDiff F1

EA HC RS EA HC RS HC RS

Recall F1 EA 0.1070 0.3672 0.4548 0.7719 0.8296 0.8738 0.6545 0.7528

HC 0.0367 0.1838 0.3098 0.7012 0.7498 0.8164 0.6398

RS 0.0362 0.1256 0.2418 0.6298 0.6507 0.7478

Precision F1 EA 0.8963 0.8316 0.8893 0.4419 0.4324 0.6026 0.5122 0.6927

HC 0.8957 0.8285 0.8931 0.4230 0.4133 0.5992 0.6871

RS 0.8050 0.6954 0.7894 0.2921 0.2850 0.4439
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Tables 12 and 13 show the p-values of the permutations between

bjective functions and algorithms for both precision and recall. It is

emarkable that in both tables the number of p-values close to zero

s high. Concretely, the Holm’s procedure rejects those hypothesis

aving a p-value lower than 0.007 for recall and lower than 0.005 for

recision. These values support the rejection of the null hypothesis,

eaning that the differences in the performance of the algorithms

re statistically significant, except for the cells that are highlighted in

he tables.

Table 14 shows the ̂A12 effect size measures for the F1 objective

unction for recall and precision. In terms of recall, the Relaxed objec-

ive function clearly outperforms F1 which again clearly outperforms

inDiff. For precision, F1 clearly performs better than Relaxed for ev-

ry algorithm, yet still only slightly worse than MinDiff. The EA and

C algorithms with F1 perform roughly equally well regarding pre-

ision, and both outperform the RS algorithm. For recall EA achieves

etter results with F1 as an objective function than HC, but again both

utperform RS.

. Threats to validity

In this section we follow the guidelines suggested by Barros et

l. (see de Oliveira Barros and Neto, 2011) to identify the threats to

alidity that are applicable to our work and describe how they were

ddressed.
 s
Internal validity threats. Parameter setting is a common internal

ariability threat. In this paper we used standard values for the search

ased techniques and values of the domain of feature models (e.g.

ranching factor). Extensive evidence provided by the work of Arcuri

nd Fraser (2013) suggests that default values might be good enough

or assessing some search based techniques in the context of testing.

owever, how their findings map to our particular context is an open

uestion that we plan to address in the future work. Throughout

he paper we discuss and illustrate how our code was implemented

nd how the data was gathered and analysed. The source code and

elated artefacts are available for replication. We should also point

ut that the case studies we used to generate the input feature sets

re publicly available to the research community and aim to represent

ealistic examples of product lines.

External validity threats. We identified two external threats. The

rst threat is the selection of the feature models corpus. We se-

ected a group of feature models that have a realistic number of

roducts, meaning that companies that employ SPL practices can

ommonly support them. Certainly other case studies could be con-

idered that would be worth including and might yield different re-

ults. Our ultimate target is to analyse the so-called feature models

n the wild (Berger, 2012). This set of case studies are perhaps the

argest and most complex collection of feature models, most of them

re from the operating systems domain. Coping with their level of

omplexity does demand significant tool improvement beyond the

cope of the current work. For instance, improvements are needed to
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Fig. 10. Recall and precision graphs for the F1 objective function.
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effectively represent larger number of features and feature sets to ef-

ficiently implement the required operators in combination with the

underlying feature modelling reasoning tools.

The second threat to validity is the selection of search based

algorithms. In this paper we chose three basic algorithms that are

commonly used in empirical research in Search Based Software Engi-

neering. Certainly, different choices of algorithms and corresponding

parameter settings could yield different results. We want to explore

other possibilities and settings in our future work.

Construct validity threats. In our work we identified two threats

of validity of this kind. The first threat is the lack of assessing the

validity of cost measures (de Oliveira Barros and Neto, 2011). To address

this threat, we made sure that a fair comparison was made among

the three search algorithms by using the same number of objective
unction evaluations. The second threat is lack of assessing the validity

f effectiveness measures (de Oliveira Barros and Neto, 2011). This

hreat is addressed because we used standard information retrieval

etrics to assess the quality of the obtained results.

We do acknowledge that our fitness functions resemble the def-

nitions of recall and precision. RelaxedFF can be regarded as a non-

ormalized form of recall. MinDiffFF is defined in terms of deficit and

urplus which in turn resemble the definitions of recall and precision

espectively, expressed in terms of differences of set sizes rather than

atios. Nonetheless, we argue, based on our experience, that these two

bjective functions do indeed capture the most common scenarios for

everse engineering feature models.

Conclusion validity threats. To address this type of threats in our

ork we: (i) considered 30 independent runs for each combination

f feature model with search algorithm and objective function, (ii)

mployed standard statistical analysis following accepted guidelines

Arcuri and Briand, 2014), and (iii) used random search as a standard

omparison baseline.

. Related work

There is extensive and increasing literature in reverse engineering

eature models, especially from source code artefacts. In this section,

e summarize those pieces of work closest to ours. In addition, we

hortly summarize two recent articles about the application of search

ased techniques to SPLs.

The work by Haslinger et al. (2011) proposes an ad hoc algo-

ithm to reverse engineer feature models from feature sets. It works

y identifying occurrence patterns in the selected and not selected

eatures that are mapped to parent–child relations of feature mod-

ls. This work has been extended to consider requires and excludes

TCs (Haslinger et al., 2013); however, it does not support more gen-

ral types of CTCs. The main distinction with our work is that only

ne feature model can be reversed engineered, whereas in our ap-

roach we could provide different feature models (if they exist) as

lternatives for the designers to choose from. Nonetheless, we be-

ieve Haslinger et al.’s algorithms could be used to seed the search

n our techniques. This is an issue we plan to explore in our fu-

ure work. Our recent work has explored using genetic program-

ing for reverse engineering feature models (Linsbauer et al., 2014).

detailed comparison with this approach is also part of our future

ork.

The work by Czarnecki and Wasowski (2007) studies reverse en-

ineering of feature models but from a set of propositional logic for-

ulas. They provide an ad hoc algorithm that can potentially extract

rom a single propositional logic formula multiple feature models but

hat tries to preserve the original formulas and reduce redundan-

ies. Subsequent work by She et al. highlighted the limitations of this

pproach, namely problems selecting the parents of features and in-

ompleteness (She et al., 2011). They proposed a heuristic to address

hese two issues that complements dependency information with

extual feature description. A recent extension of this work provides

mproved algorithms based on CNF and DNF constraints (She et al.,

014). In contrast with our work, their starting point are configuration

les, documentation files, and constraints expressed in propositional

ogic.

Yi et al. (2012) use classifiers to identify binary constraints but

o not reach the point of constructing a feature model as pro-

osed by our work. Nevertheless, we believe their work could also

e used to seed the search algorithms. We aim to address this is-

ue as part of our future work. Closer to our work is Acher et al.

2012) that also tackle the reverse engineering of feature models

rom feature sets. The salient difference between our approaches is

hat their work maps each feature set into a feature model which are

ater merged in to a single feature model. Also citetmathieu13, pro-

osed to reengineer plugin-based architectures to obtain a variability
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odel describing the dependencies existing on it. The authors pro-

ose to generate a model to describe the architecture of the system

nd another model to describe the dependencies. These two models

re consequently merged to represent the variability of the plugin

ystem. The mapping and merge operations rely on propositional

ogic techniques and tools which can be computationally expensive.

more detailed comparison and analysis of the advantages and dis-

dvantages of both approaches is part of our future work.

Sannier et al. performed an analysis of matrices for products

omparison available at Wikipedia. Their work identifies variabil-

ty patterns in the values of the matrix cells, and portrays the

hallenges and potential benefits of exploiting that information,

mong other things, to extract models such as feature models

Sannier et al., 2013). One difference with our work is that their

roduct matrices can contain other values, rather than selected or

ot selected as in our case. In addition, to the best of our knowl-

dge, at present there is no algorithm let alone tool support for this

pproach.

Davril et al. (2013) address the problem of incomplete and infor-

al product descriptions. In contrast with our work, the authors do

ot assume the existence of a table of system variants like Table 1.

nstead, their focus is on harvesting the product information from

ebsite product descriptions. To the harvested information, they ap-

ly ad hoc algorithms to reconstruct a feature model. We believe this

ork is complementary to ours as it could be used to obtain further

nd ideally more realistic case studies. A more detailed comparison

n the obtained feature models with both approaches is also part of

ur future work.

Harman et al. (2014) performed a survey on the topic of SBSE

pplied to SPLs. They present an overview of recent articles clas-

ified according to themes such as configuration, testing, or archi-

ectural improvement. Most salient is their proposal on using Ge-

etic Improvement, a variation of Genetic Programming (Poli et al.,

008), whose goal is to improve existing programs rather than cre-

ting them from scratch. Lopez-Herrejon et al. (2014c) performed

preliminary systematic mapping study at the connection of SBSE

nd SPL. In contrast with Harman et al.’s work, they categorized

he articles along a known framework for SPL development. Fur-

hermore, this mapping study also considered the types of case

tudies used, their number and provenance, as well as how they

ere empirically analyzed. Both studies pointed out the prevalence

f testing as the main application of SBSE techniques and high-

ighted the increasing number of publications on the subject in recent

ears.

0. Future work

We argue that our study has opened up several research venues on

he application of SBSE techniques for variability management. The

ollowing are some areas we plan to pursue as future work.

Parameter landscape analysis. Our three search based techniques

ere initialized with standard parameter values and default domain

alues (e.g. feature model branching factor). Thus an analysis of the

arameter landscape of the problem is duly called for. The ultimate

oal is to see whether any particular parameter configurations can

ield better results and how they would scale for larger feature models

nd feature sets.

Advanced search-based techniques. Our current work explored

hree basic search algorithms with standard and basic settings. We

lan to assess other possibilities, for instance, different selection

trategies beyond roulette wheel.

Improvement of objective functions. The cornerstone of our work

s devising an adequate objective function that contains the set

f products required, as tight as possible, but still remains scal-

ble. A possibility is to experiment with functions that consider
eature model metrics (e.g. Bagheri and Gasevic, 2011) or perhaps

xploiting domain knowledge, such as feature hierarchies, that can

elp to trim the search space. We also plan to explore performance

mprovements for the feature model operations that the objective

unctions rely on. The work of Thüm et al. (2009) and Mendonça et al.

2009) are our starting points.

Variability-aware mutation operators. Currently our work applies

utation operators without any considerations of any potential vari-

bility implications, that is, how it could impact the set of products

enoted by a feature model. We want to extend the set of muta-

ion operators so that they consider the impact they may have on

ariability. We could then set up different probabilities so that they

ould be applied distinctly perhaps depending on the nature of the

equired set of products. Integrating the work on analysis of feature

odel changes is a starting point (Thüm et al., 2009; Segura et al.,

011).

Quality of reverse-engineered feature models. So far the emphasis of

ur work has been on obtaining a feature model that denotes the re-

uired set of feature sets. However, as we mentioned, more than one

eature model can denote the same set of feature sets. The question is

ow, towards which equivalent feature model should the search be

irected? We believe that quality metrics for feature models (Bagheri

nd Gasevic, 2011) as well as quantification of developers feedback

ould also be integrated (Acher et al., 2011) to help answer this

uestion.

Exploiting genetic programming. Feature models can have more

omplex relations among features, e.g. arbitrary CTCs, and can be

rovided with more attribute values (Benavides et al., 2010). These

wo characteristics may be better addressed with genetic program-

ing (Poli et al., 2008), which provides more flexible alternatives to

anipulate the tree-like structures of the feature models. Our recent

ork on the subject is but a first step in this direction (Linsbauer et al.,

014). We believe genetic programming could prove useful not only

or our reverse engineering goals but also for other related problems

f variability management.

Comparative studies. As mentioned throughout the paper, spe-

ially in the related work, we plan to perform a detailed compar-

tive study of other reverse engineering approaches to assess both

heir quality and their complementarity to our work (Haslinger

t al., 2011; Yi et al., 2012; Acher et al., 2012, 2013; Davril et al.,

013).

Multi-objective optimization formulation. Our work highlighted a

lear trade-off between precision and recall that we reified into a

hird fitness function based on F1 measure with good performance

esults. This also opens up the possibility of exploring our reverse

ngineering tasks as multi-objective optimization problem (Coello

t al., 2007; Deb, 2001). In our case, precision, recall or other perfor-

ance metrics can be the objectives to optimize depending on the

articular needs of the concrete problem domains. As a first step, we

ill explore classical multi-objective algorithms such as NSGA-II and

PEA2.

1. Conclusions

As SPLs are becoming a more pervasive development paradigm so

s the need to reverse engineer feature models to capture their vari-

bility. In this paper we make an assessment of three search based

echniques using three objective functions to reverse engineer fea-

ure models from the feature sets that describe system variants of a

PL.

We compared and contrasted the combinations of Relaxed and

inDiff for three search algorithms. The results showed a clear

rade-off between recall and precision for these objective func-

ions. Relaxed captures the scenario where recall is more impor-

ant for the reverse engineering task and obtained the best results
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using the evolutionary algorithm. MinDiff, on the other hand, cap-

tures the scenario where it is also important to have a good precision

(e.g. for software testing purposes). Here the results are slightly better

for hill climbing than for the evolutionary algorithm but not statis-

tically significant. Furthermore, we captured the trade-off between

recall and precision using Fβ measure and evaluated as a third ob-

jective function F1, which equally favours recall and precision. For F1

the best results where obtained by the evolutionary algorithm. We

argue that using Fβ measure as an objective function gives software

engineers the flexibility to weigh in different relationships between

recall and precision applicable to the concrete problem domains of

the reverse engineering task.

Our work also helped to identify several research venues that we

plan to address as future work. We believe that the work presented

in this paper is a stepping stone towards leveraging the wealth of

Search-Based Software Engineering techniques not only for reverse

engineering feature models but also to address many variability man-

agement challenges. The sources and data can be downloaded from:

http://www.sea.jku.at/tools/jss-sbse.
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Appendix A. Repairing strategy in ETHOM

In ETHOM, we identified three types of patterns making a chro-

mosome infeasible or semantically redundant, namely: (i) those en-

coding set relationships (or- and alternative) with a single child

feature (Fig. 11a), (ii) those containing cross-tree constraints be-

tween features with parental relationship (Fig. 11b), and (iii)

those containing features linked by contradictory or redundant
Fig. 11. Examples of infeasible individuals and repairs.
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ross-tree constraints (Fig. 11c). To remove these inconsistencies we

pplied the following repair algorithm: (i) isolated set relationships

re converted into optional relationships (e.g. the model in Fig. 11a

s changed as in Fig. 11d), (ii) cross-tree constraints between features

ith parental relationships are removed (e.g. the model in Fig. 11b

s changed as in Fig. 11e), and (iii) two features cannot be linked

y more than one cross-tree constraint (e.g. the model in Fig. 11c is

hanged as in Fig. 11f). For further details, please refer to (Segura et al.,

014).
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